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Abstract
The Casimir-like size effect rises in ideal gases confined in a finite domain due
to the wave character of atoms. By considering this effect, thermodynamic
properties of an ideal gas confined in spherical and cylindrical geometries are
derived and compared with those in rectangular geometry. It is seen that an
ideal gas exhibits an unavoidable quantum surface free energy and surface over
volume ratio becomes a control variable on thermodynamic state functions in
microscale. Thermodynamics turns into non-extensive thermodynamics and
geometry difference becomes a driving force since the surface over volume
ratio depends on the geometry.

PACS numbers: 05.70.−a, 05.90.+m, 51.30.+i

1. Introduction

In any stationary wave field a bounded domain exhibits Casimir-like size effects as long
as the maximum wavelength is bigger than the size of the domain. The original Casimir
effect is an attractive interaction between two parallel conducting neutral plates at absolute
zero temperature due to the alteration of the zero point electromagnetic wave field between
the conducting boundaries [1]. In general, the effect depends on temperature, geometric
and electromagnetic properties of the boundary material and it can be repulsive under some
geometrical conditions [2–4]. The effect becomes important on micron and sub-micron
scales. Recent developments in nanotechnology make it possible to produce some devices on
nanoscale [5, 6]. Therefore, the applications of the Casimir effect in technology have become
a current issue [7–13]. The number of studies on the thermodynamics of the Casimir effect
have been increasingly [14–20].
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An equivalent effect has been observed in an acoustic wave field [21]. In a recent study,
another equivalent effect has been theoretically proposed and examined by considering the
wave character of atoms in ideal gases confined in a rectangular box [22]. For rectangular
geometry, it has been shown that the Casimir-like size effects in ideal gases cause size-
dependent additional terms in the thermodynamic state functions like the free energy. Some
consequences of this size dependence are anisotropic pressure, diffusion due to the size
difference and thermosize effects similar to thermoelectric effects [22]. In the present study,
spherical and cylindrical confinement geometries are considered and it is shown that an ideal
gas confined in a finite domain exhibits an unavoidable quantum surface free energy, FA,
which depends on the surface over volume ratio of the domain, A/V , besides the number
of particles and temperature. This surface energy is also proportional to the most probable
de Broglie wavelength of the particles, which depends on temperature and molecular mass.
Therefore, it is a consequence of the wave character of the particles and it is called ‘quantum
surface free energy’. While the classical surface energy results from the interactions between
the particles, the quantum surface energy arises from the surface modes. Unavoidable existence
of FA makes the thermodynamics non-extensive, surface and size dependent (namely A/V ) in
general on account of the wave character of atoms. Deviations from ordinary thermodynamics
should become noticeable on the micron and sub-micron scale. Apart from their relevance
to fundamental and non-extensive thermodynamics the results may affect the phenomena in
nano and microstructures.

2. Thermodynamic properties of a monatomic ideal gas confined
in a spherical geometry

2.1. Single-particle partition function

The solution of the Schrödinger equation for a single-particle confined in a spherical vessel
gives the following translational energy eigenvalues of the form

εnlm = h̄2

2maR2
x2

nl with n = 1, 2, 3, . . . ; l = 0, 1, 2, 3, . . . and

m = −l, . . . ,−1, 0, 1, . . . , l, (1)

where h̄ is the reduced Planck constant, ma is the atomic mass, R is the radius of spherical
vessel and xnl is the nth root of the spherical Bessel function of the order of l. The spin states are
not considered since they do not play any role in this study. Therefore, in Maxwell–Boltzmann
statistics the single-particle partition function may be written as

ζ =
∑
m,l,n

exp

(
−εnlm

kbT

)
(2a)

ζ =
l∑

m=−l

∞∑
l=0

∞∑
n=1

exp

[
−

(αxnl

π

)2
]

=
∞∑
l=0

(2l + 1)

∞∑
n=1

exp

[
−

(αxnl

π

)2
]
, (2b)

where kb is Boltzmann’s constant, T is the temperature and α is a dimensionless scale factor
defined as α = h/(2

√
2makbT R) = Lc(T )/R, Lc(T ) is one-half of the most probable de

Broglie wavelength of the particles at temperature T.
Exact value of the partition function in equation (2b) can be calculated numerically by

use of the exact roots, which in turn also need to be determined numerically. However, the
calculation time is inversely proportional to the value of α for the desired accuracy of the
partition function. For helium-4 at 300 K Lc equals 0.045 nm. Therefore, the calculation
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Figure 1. The nth root of the spherical Bessel function of the order of l versus n and l.

time becomes longer when the radius of the domain increases. The calculation process to be
unpractical for a sphere with radius R � Lc. Furthermore, to obtain an analytical result for
the partition function, it is necessary to use an approximate function for the roots of spherical
Bessel functions. Their exact values are given in figure 1 as a function of n and l. It is seen
that the roots essentially lie on a flat surface which may be approximated by

xnl = cnn + cll. (3)

The values of cn and cl are determined numerically by equalizing the partition function based
on equation (3) to the one with the exact roots.

The usual way to calculate the summations in equation (2b) is to use the integral
approximation and replace the sums by integrals. For large systems the result of the
integral approximation deviates only negligibly from the result of the summations. Such
small deviations, however, become noticeable for systems on the micron or sub-micron scale.
An exact way to calculate the sums is by use of the Poisson summation formula [23], which
for a symmetric function may be expressed as

f (i) = f (i) ⇒
∞∑
i=1

f (i) =
∫ ∞

0
f (i) di − f (0)

2
+ 2

∞∑
s=1

∫ ∞

0
f (i) cos(2πsi) di. (4)

The first term on the right-hand side is the dominant and conventional integral term. The
second one is the zero correction term, which excludes the false contribution of the zero value
of i to the integral term. The third one is the discreteness correction due to discrete values of i
instead of continuous ones. It is possible to show numerically that the discreteness correction
is much smaller than the zero correction as long as the system size is bigger than Lc (α < 1).
As an example, the ratio of the discreteness correction to the zero correction for the summation
over n in equation (2b) for l = 0 is in the order of 1.8 × 10−4 even for α as large as unity.
Therefore, the main correction to the integral approximation comes from the second term in
equation (4) for small values of α.
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The symmetry property of the function exp[−(αxnl/π)2] in equation (2b) permits the
use of equation (4). From the first two terms in equation (4) and by use of equation (3) the
single-particle partition function (equation (2b)) is determined as

ζ = π7/2

4α3cnc
2
l

[
1 − 2α

π3/2
(cn − cl) − α2

π2
cl(cn − cl) − α3cnc

2
l

π7/2

]
. (5)

It is known that the leading term in equation (5), π7/2/4α3cnc
2
l , provides the conventional

thermodynamic properties. Therefore, it must be independent of geometry. This quantity can
be written as 3π5/2V/16L3

ccnc
2
l in term of volume V by elimition of α. For a rectangular

geometry the leading term is π3/2V/8L3
c [22]. Both equations must be equal and therefore

we must have cnc
2
l = 3π/2. By use of this relation, and of half a million exact roots of

the spherical Bessel functions, the approximate partition function and the exact one can be
shown to agree if cn → 3.514 and cl → 1.158 when α takes values much smaller than unity.
Even for α = 0.01, the error of the partition function in equation (5)—and with cn = 3.514
and cl = 1.158—is about 0.008% and this value decreases with a decreasing value of α, i.e.,
increasing radius. Therefore, it is possible to use equation (5) as an analytical expression for
the partition function in the case of α < 0.01 which is the interesting case here.

Because small values of α are considered here, the second- and third-order terms in the
bracket given in equation (5) may be neglected. By use of cn = 3.514 and cl = 1.158
equation (5) becomes

ζ = π5/2

6α3

[
1 − 3α

2
√

π

]
= π3/2V

8Lc(T )3

[
1 − 3

2
√

π

Lc(T )

R

]
, (6)

where V is the volume of a sphere. For α = 0.01, the contribution of the second term in
equation (6) is approximately 100 times bigger than the error due to the approximation by
equation (3). This ratio increases with decreasing values of α. Therefore, equation (6) can
safely be used for α < 0.01.

2.2. Existence of an unavoidable quantum surface free energy

The partition function of a gas of N atoms is given by Z = ζN/N!. From F = −kbT ln Z,
the free energy of the gas is obtained by use of the Stirling approximation and of ln(1 + x)∼= x

for x � 1 as

F = −NkbT

[
ln

(
CT 3/2

n

)
+ 1

]
+ NkbT

3

2
√

π

Lc(T )

R
, (7)

where C abbreviates the (2πmakb)
3/2/h3. The first term is the conventional bulk-free energy

of a spinless monatomic ideal gas obtained by the integral approximation, the first term in
equation (4). The second term in equation (7) is a correction due to the second term in
equation (4) and it represents the effect of surface modes on free energy. It is possible to
re-write equation (7) in the following form:

F = FV + FA = VfV (n, T ) + AfA(n, T ), (8a)

where FV is the bulk-free energy, FA = AfA(n, T ) is the quantum surface free energy,
n = N/V is the volumetric density of particles, V = 4πR3/3 is the volume in which the gas
is confined, A = 4πR2 is the surface area of this volume, fV and fA are bulk and quantum
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surface free energy densities defined, respectively, as

fV (n, T ) = FV

V
= −nkbT

[
ln

(
CT 3/2

n

)
+ 1

]
, (8b)

fA(n, T ) = FA

A
= nkbT

Lc(T )

2
√

π
. (8c)

It is clear that FA = AfA(n, T ) is not a homogeneous function of order 1 on N and
V . In other words, if we double the volume and number of particles by keeping the density
and temperature constant, FA does not increase twice since the increment in surface area is
different than the increment in volume. This fact makes F a non-extensive free energy.

Due to the wave character of atoms, FA is an unavoidable component of the free energy
and it is independent of the molecular interactions but depends on the geometric property of
the domain, namely A/V . On the other hand, FA is proportional to the quantity of Lc(T )A/V

which becomes negligible for large systems since Lc(T ) is also a very small quantity for
ordinary temperatures. Therefore, the contribution of FA to the free energy is noticeable only
for microsystems.

2.3. Other thermodynamics properties

Pressure, chemical potential, entropy and energy are derived from the free energy by
differentiation as

p = − 1

4πR2

∂F

∂R
= nkbT + nkbT

1

2
√

π

Lc(T )

R
= nkbT +

fA(n, T )

R
, (9)

µ = ∂F

∂N
= −kbT ln

(
CT 3/2

n

)
+ kbT

3

2
√

π

Lc(T )

R
, (10)

S = −∂F

∂T
= Nkb

[
ln

(
CT 3/2

n

)
+

5

2

]
− Nkb

2

3

2
√

π

Lc(T )

R
, (11)

E = F + T S = 3

2
NkbT +

NkbT

2

3

2
√

π

Lc(T )

R
. (12)

In these equations, the first terms are the conventional terms and the second ones are the
correction terms. The latter ones may be identified by the occurrence of Lc. For He-4 gas at
300 K and 105 Pa (≈1 atm), fA(n, T ) in equation (9) equals approximately 10−6 N m−1and it
gives 1 Pa pressure correction for a system with 1 µm radius. At this point, it is worth noting
that correction terms are not directly related with the ground-state energy of the particles,
which is second order in Lc(T )/R.

The correction term in equation (10) shows that the chemical potential of a gas confined
in a small sphere is bigger than that of the same gas confined in a large sphere even if both
have the same density and temperature. This leads to diffusion between small and large
systems because of the size difference. This kind of diffusion has been exhibited in [22] for a
rectangular geometry. Furthermore, by use of equations (7), (9) and (10), it is seen that Gibbs
free energy per particle is not equal to chemical potential even for spherical geometry, where
the pressure is isotropic.
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3. Thermodynamic properties in a cylindrical geometry

Thermodynamic properties of a monatomic ideal gas confined in a cylindrical geometry may
be calculated by following the same method as in the previous section. The solution of the
Schrödinger equation gives the following energy eigenvalues

εnlk = h̄2

2ma

[(xnl

R

)2
+

( π

H
k
)2

]
with

n = 1, 2, 3, . . .

l = −∞, . . . ,−1, 0, 1, . . . ,∞,

k = 1, 2, 3, . . .

(13)

where R and H are the radius and the height of the cylindrical vessel, and xnl is now the nth root
of the ordinary Bessel function of order of l. Therefore, the single-particle partition function
is written as

ζ =
∞∑

k=1

∞∑
l=−∞

∞∑
n=1

exp

[
−

(αRxnl

π

)2
− (αHk)2

]
(14)

where αR and αH are dimensionless scale factors defined as αR = Lc(T )/R and αH =
Lc(T )/H with Lc(T ) = h/(2

√
2makbT ). By use of the symmetry property of the function

exp[−(αRxnl/π)2] equation (14) may be written as

ζ =
∞∑

k=1

exp[−(αH k)2]

[
2

∞∑
l=1

∞∑
n=1

exp

[
−

(αRxnl

π

)2
]

+
∞∑

n=1

exp

[
−

(αRxn0

π

)2
]]

(15)

which permits the use of equation (4). Similar to the roots of spherical Bessel functions,
the roots of ordinary Bessel functions also essentially lie on a flat surface, which can be
represented by equation (3). By using first and second terms in equation (4) and considering
equation (3) for xnl , the single-particle partition function is obtained as

ζ = π5/2

2α2
RαH cncl

[
1 − 1√

π

(cnαR

2
+ αH

)]
. (16)

The required geometric independence of the leading term in equation (16) dictates
that cncl = 4 holds. By use of this relation the approximate partition function, based on
equation (3), and the one calculated numerically from the exact roots of Bessel functions are
found to be equal for cn → 2 and cl → 2 when αR and αH are much smaller than unity. By
use of these values in equation (16) the single-particle partition function is obtained as

ζ = π5/2

8α2
RαH

[
1 − 1√

π
(αR + αH )

]
= π3/2V

8L3
c

[
1 − Lc(T )√

π

(
1

R
+

1

H

)]
. (17)

Thermodynamic properties are calculated by using equation (17) in a similar way as in
section 2. Therefore, we may write

F = −NkbT

[
ln

(
CT 3/2

n

)
+ 1

]
+ NkbT

Lc(T )√
π

(
1

R
+

1

H

)
, (18a)

F = FV + FA = VfV (n, T ) + AfA(n, T ), (18b)

where FV is the bulk (conventional) free energy, FA is the quantum surface free energy,
V = πR2H is the volume in which the gas is confined, A = 2πRH + 2πR2 is the surface
area of this volume, fV and fA are the same given in equations (8b) and (8c), respectively.
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Pressures in radial and axial directions are obtained as

pR = − 1

2πRH

∂F

∂R
= nkbT +

fA(n, T )

R
, (19a)

pH = − 1

πR2

∂F

∂H
= nkbT +

2fA(n, T )

H
. (19b)

It is seen that the pressure tensor becomes anisotropic in cylindrical geometry. Chemical
potential, entropy and energy are given as

µ = −kbT ln

(
CT 3/2

n

)
+ kbT

Lc(T )√
π

(
1

R
+

1

H

)
, (20)

S = Nkb

[
ln

(
CT 3/2

n

)
+

5

2

]
− Nkb

2

Lc(T )√
π

(
1

R
+

1

H

)
, (21)

E = 3

2
NkbT +

NkbT

2

Lc(T )√
π

(
1

R
+

1

H

)
. (22)

4. Conclusion: geometry and size dependence of thermodynamics

By use of the equations (7) and (18a) and [22], free energy expressions in spherical, cylindrical
and rectangular geometries are re-written, respectively as

Fsph = −NkbT

[
ln

(
CT 3/2

n

)
+ 1

]
+ NkbT

Lc(T )√
π

3

2R
, (23)

Fcyl = −NkbT

[
ln

(
CT 3/2

n

)
+ 1

]
+ NkbT

Lc(T )√
π

(
1

R
+

1

H

)
, (24)

Frct = −NkbT

[
ln

(
CT 3/2

n

)
+ 1

]
+ NkbT

Lc(T )√
π

(
1

Lx

+
1

Ly

+
1

Lz

)
, (25)

where Lx , Ly and Lz are the dimensions of the rectangular box. From equations (23)–(25), it
is seen that the correction terms are different for different geometries and we may summarize
them in a single formula by using the ratio of surface area, A, to volume, V . Thus, free energy
can be expressed as

F = −NkbT

[
ln

(
CT 3/2

n

)
+ 1

]
+ NkbT

Lc(T )

2
√

π

A

V
. (26)

The second term in equation (26) is the general form of quantum surface free energy.
Consequently, it is possible to say that the thermodynamic state functions of an ideal gas
do not depend on only two variables, like temperature and density, but also depend on A/V ,
which depends on geometry and size. In other words, specific thermodynamic properties
of two systems filled by the same gas at the same temperature and density are different,
if their confinement geometries and/or sizes are different. Geometry and size differences
become driving forces for diffusion, and geometric asymmetry causes pressure anisotropy.
As a result, thermodynamics becomes non-extensive because it depends on A/V in general.
Non-extensive thermodynamics is a branch of thermodynamics for systems having long-range
interactions, like gravitational or unscreened coulomb interactions [24, 25]. However, it is seen
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that even the thermodynamics of an ideal gas is non-extensive due to unavoidable existence
of quantum surface free energy.

In a classical gas, which is represented by Maxwell–Boltzmann statistics, the number of
particles in surface modes is always less than those in a Bose gas and more than those in a
Fermi gas. Therefore, it is expected that the size effects considered here become stronger in
a Bose gas while they become weaker in a Fermi gas. However, Bose–Einstein condensation
makes the problem more complicate in the case of a Bose gas. Casimir-like size effects in
ideal quantum gases are under consideration now. In a real gas confined in a finite domain,
interactions between the particles give rise the classical surface free energy, which may become
dominant and suppress the quantum one if the interaction potential is strong, gas density is
high and the molecular mass is big (Lc is small). Helium gas has a small atomic mass and
very weak interatomic interaction potential. Therefore, helium gas at low density is the best
candidate to observe the surface dependency in thermodynamics of a classical gas confined in
a micron or sub-micron scale.

For a given volume and temperature, the stable geometry of a system having a flexible
surface is a sphere since the free energy is minimal in the spherical case. By considering the
quantum surface free energy, it may be expected that an ideal gas in a paralloidal box may
have shear stresses, which act on the surfaces of the box trying to transform it to a rectangular
box, because the later one has less surface area than the paralloidal one for a given volume.
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